Abet

Pull-out load F_z (N)

TUF-S-6XL

Materials

• Sleeve body:

Stainless steel A4

Material number 1.4401, AISI 316

• Mandrel:

Carbon steel zinced

Head type: Hex., 8mm A/F

Sleeve body: $\emptyset = 6.0 \text{ mm}$

Predrill: Ø panel = 6,0 mm to create with special SFS drill bit only

Predrill: ø bracket = 6,5 mm

r un out load r z (N)					1771					
Remarks:				Part II	///	Fz				
Support ring-Ø	pport ring-Ø 135 mm									
Part II (blind sid		1//-								
			Amount of TUF-S		Test results (N)					
Material	t _{II} (mm)	Embedment (mm)	per bracket	KL in mm	$F_{z,avg}$	s	TUF-S distance in mm			
Abet panel										
	8	5.50	1x		2637	63	-			
	10	7.00	1x		3717	307	-			

Shear load $\mathbf{F_q}$ (N) $\mathbf{F_{q,avg}}$ is measured between a displacement of max 3 mm

Part II (blind side)			Part I (setting side) Material			Test results (N)		
Material	t _{II} (mm)	Embedment (mm)	grade	t _i (mm)	KL in mm	$F_{q,avg}$	s	TUF-S distance in mm
Abet panel			Steel					
	8	5.50	S355	3.50	9.00	5009	117	-
	10	7.00	S355	2.00	9.00	6174	91	-

Tensile breaking load Z_b (N)

 $Z_b \ge 8.780 \text{ N}$

Shear breaking load Q_b (N)

 $Q_b \ge 6.530 \text{ N}$

All calculations, measurements, fasteners and design methods have to be verified by a responsible designer or engineer, regarding the corresponding structure and load. Please consult your national norms and approvals.